
TestStand TM

Using LabVIEWTM with TestStand

Using LabVIEW with TestStand

July 2003 Edition
Part Number 323200A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,
China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,
India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970,
Korea 82 02 3451 3400, Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 1800 300 800, Norway 47 0 66 90 76 60, Poland 48 0 22 3390 150, Portugal 351 210 311 210,
Russia 7 095 238 7139, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, FieldPoint™, IMAQ™, IVI™, LabVIEW™, National Instruments™, NI™, ni.com™, and TestStand™ are trademarks of
National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

♦ The ♦ symbol indicates that the following text applies only to a specific
product, a specific operating system, or a specific software version.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

© National Instruments Corporation v Using LabVIEW with TestStand

Contents

Chapter 1
Introduction

The Role of LabVIEW in a TestStand-Based System...1-1
Code Modules..1-1
Operator Interfaces ..1-2
Custom Step Types..1-2
Version Compatibility ...1-2

Chapter 2
Calling LabVIEW VIs from TestStand

Introduction to the Edit LabVIEW VI Call Dialog Box ..2-1
Path and Execution Section ...2-2
Description and Connector Pane Section ..2-3

Creating and Configuring a New Step Using the LabVIEW Adapter2-4

Chapter 3
Creating, Editing, and Debugging LabVIEW VIs from TestStand

Creating a New VI from TestStand ...3-1
Editing an Existing VI from TestStand..3-3
Debugging a VI in TestStand...3-3

Chapter 4
Using LabVIEW Data Types with TestStand

Data Type Conversion ...4-1
Calling VIs with String Parameters ...4-3
Calling VIs with Cluster Parameters ...4-4

Specifying Each Cluster Element Individually ...4-5
Passing Existing TestStand Container Variables to LabVIEW.......................4-5
Creating a New Custom Data Type...4-6

Creating TestStand Data Types from LabVIEW Clusters...4-7

Contents

Using LabVIEW with TestStand vi ni.com

Chapter 5
Configuring the LabVIEW Adapter

Selecting a LabVIEW Server .. 5-1
Per-Step Configuration of the LabVIEW Server .. 5-2

Reserve Loaded VIs for Execution.. 5-3
Code Template Policy ... 5-4
Legacy VI Settings .. 5-6

Chapter 6
Creating Custom User Interfaces in LabVIEW

TestStand User Interface Controls... 6-1
TestStand Utility Library... 6-2
Creating Custom Operator Interfaces .. 6-3

Configuring the TestStand UI Controls .. 6-4
Handling Events .. 6-4
Starting TestStand ... 6-5
The Main Event Loop and Shutting Down TestStand 6-6
Menu Bars ... 6-7
Localization... 6-7

Other User Interface Utilities .. 6-8
Making a Dialog VI Modal to TestStand.. 6-8
Checking For Stopped Execution ... 6-8

Appendix A
Calling LabVIEW VIs on Remote Systems

Appendix B
Using the TestStand ActiveX APIs in LabVIEW

Appendix C
Calling Legacy VIs

Appendix D
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation 1-1 Using LabVIEW with TestStand

1
Introduction

This chapter discusses how TestStand and LabVIEW work together in a
test system.

The Role of LabVIEW in a TestStand-Based System
TestStand is a test management environment that you use to organize and
execute code modules written in a variety of languages and application
development environments (ADEs), including LabVIEW. It handles core
test management functionality such as the definition and execution of the
overall testing process, user management, report generation, database
logging, and more. TestStand can work in a variety of different testing
scenarios and environments because it allows extensive customization of
components like the process model, step types, and operator interfaces.
You can use LabVIEW to accomplish much of this customization.

You typically use LabVIEW to customize your test system in the following
ways:

• Create code modules—such as tests and actions—that TestStand can
call using the LabVIEW Adapter

• Create custom operator interfaces for your test system

• Create custom step types

Code Modules
TestStand can call LabVIEW VIs with a variety of connector pane
configurations. It can also call VIs that reside on either the same machine
as TestStand or on other network computers, including computers running
the LabVIEW Real-Time (RT) Module.

TestStand can pass data to the VIs it calls and store the data that the VI
returns. Additionally, VIs that TestStand calls can access the complete
TestStand application programming interface (API) for advanced
applications.

Chapter 1 Introduction

Using LabVIEW with TestStand 1-2 ni.com

Operator Interfaces
You can use LabVIEW to build custom user interfaces for your test
systems. Typically, these custom user interfaces are operator interfaces
designed for use in production test systems. The full power of the
LabVIEW development environment allows you to customize these
interfaces to meet your exact requirements. Refer to Chapter 9, Creating
Custom Operator Interfaces, in the TestStand Reference Manual, for more
information about creating custom operator interfaces.

Custom Step Types
You can use LabVIEW to create VIs that you call from custom step types.
These VIs can implement editing dialog boxes and other features of custom
step types. Refer to Chapter 13, Creating Custom Step Types, in the
TestStand Reference Manual for more information about custom step
types.

Version Compatibility
TestStand 3.0 is compatible with LabVIEW 6.1 and later. Because of the
increased support for TestStand integration provided by LabVIEW 7.0, not
all of the TestStand 3.0 LabVIEW Adapter functionality is available to
LabVIEW 6.1 users.

Table 1-1 itemizes these differences in functionality.

Table 1-1. Version Compatibility

TestStand Functionality LabVIEW 6.1
LabVIEW 7.0

or later

Call VIs with arbitrary connector panes No Yes

Call VIs on remote computers No Yes

Run VIs in the LabVIEW Run-Time Engine No Yes

Create User Interfaces using the TestStand UI
Controls

No Yes. Note that this
functionality requires
the LabVIEW Full or
Professional
Development
System.

Call TestStand VIs from versions of TestStand
prior to 3.0 and LabVIEW Test Executive VIs

Yes Yes

Chapter 1 Introduction

© National Instruments Corporation 1-3 Using LabVIEW with TestStand

Open VIs for editing from TestStand Yes Yes

Create VIs from TestStand Yes Yes

Debug VIs (step in/step out) from TestStand Yes Yes

Run VIs using the LabVIEW development system Yes Yes

Run VIs using a LabVIEW executable Yes Yes

Create User Interfaces using the TestStand API Yes Yes

Program with the TestStand API Yes Yes

Table 1-1. Version Compatibility (Continued)

TestStand Functionality LabVIEW 6.1
LabVIEW 7.0

or later

© National Instruments Corporation 2-1 Using LabVIEW with TestStand

2
Calling LabVIEW VIs from
TestStand

This chapter discusses how to call LabVIEW VIs from TestStand using the
LabVIEW Adapter.

Introduction to the Edit LabVIEW VI Call Dialog Box
Configure calls to LabVIEW VIs using the Edit LabVIEW VI Call dialog
box, which is shown in Figure 2-1. To launch this dialog box, select
Specify Module from the context menu of any step that uses the LabVIEW
Adapter.

The Edit LabVIEW VI Call dialog box is divided into two main sections,
which are illustrated in Figure 2-1.

Chapter 2 Calling LabVIEW VIs from TestStand

Using LabVIEW with TestStand 2-2 ni.com

Figure 2-1. Edit LabVIEW VI Call Dialog Box

Path and Execution Section
The Path and Execution section of the Edit LabVIEW VI Call dialog box
contains the pathname to the VI that the adapter will execute, as well as
buttons for editing the VI in LabVIEW, creating a new VI based on the
code template for the current step type, and opening the Advanced Settings
dialog box. You can also use this section to specify whether LabVIEW
displays the front panel of the VI when it is called by TestStand.

1 Path and Execution Section 2 Description and Connector Pane Section

1

2

Chapter 2 Calling LabVIEW VIs from TestStand

© National Instruments Corporation 2-3 Using LabVIEW with TestStand

Description and Connector Pane Section
The Description and Connector Pane section of the Edit LabVIEW VI Call
dialog box contains specific information about the VI to call, including
complete information about the controls and indicators that are wired to the
connector pane of the VI.

As shown in Figure 2-1, the Description and Connector Pane section is
divided into the following three areas: the VI Context Help Picture, the
VI Description, and the VI Parameter Table.
• VI Context Help Picture—Displays the context help picture of the VI

as shown in the LabVIEW Context Help window. When you click on
any label or connector inside the VI icon, the parameter control will
automatically select that parameter. The connector pane also blinks to
let you know which parameter is selected.

• VI Description—Displays the description of the VI from the
Documentation page of the LabVIEW VI Properties dialog box.
If there is no description, this control is hidden.

• VI Parameter Table—Contains information about each control or
indicator wired to the connector pane of the VI. These are the
parameters of the VI.

The VI Parameter Table, in turn, contains the following information
for each parameter:

– Name—Caption text for the control or indicator. If there is no
caption, this field contains the label text.

– Type—LabVIEW data type for the control or indicator. Refer to
Chapter 4, Using LabVIEW Data Types with TestStand, for more
information about how LabVIEW data types map to TestStand
data types.

– In/Out—Specifies whether the parameter is an input (control) or
an output (indicator).

– Default—Specifies whether TestStand uses the default value of
the control for any parameters. If the terminal on the VI is marked
Required, this option is not available.

– Value—A TestStand expression. For input parameters, TestStand
passes the result of this expression to the VI, unless the checkbox
in the Default column is enabled. For output parameters,
TestStand stores the data that the VI outputs in the location
specified by this parameter.

Chapter 2 Calling LabVIEW VIs from TestStand

Using LabVIEW with TestStand 2-4 ni.com

• VI Help—Displays the help associated with the VI.

• Reload Prototype—Allows you to refresh the parameter information
for the VI.

Note Use the Help button at the bottom of the dialog box to access the TestStand Help,
which provides additional information about the Edit LabVIEW VI Call dialog box.

Creating and Configuring a New Step Using the
LabVIEW Adapter

In this tutorial, you will learn how to insert a new step that uses the
LabVIEW Adapter and then configure that step to call a test VI.

1. Launch the TestStand Sequence Editor.

2. Select LabVIEW Adapter from the Adapter ring control.

3. Right-click inside the new Sequence File window and insert a new
Pass/Fail step.

4. Rename the new step LabVIEW Pass/Fail Test.

5. Right-click the LabVIEW Pass/Fail Test step and select
Specify Module from the context menu to launch the Edit LabVIEW
VI Call dialog box.

♦ Proceed to Step 10 if you are using LabVIEW 6.1.

6. Click the File Browse button and select the following file:
<TestStand>\Tutorial\LabVIEW Pass-Fail Test.vi.

After you select the file, TestStand launches the File Not Found dialog
box to indicate that the file does not reside in any of the TestStand
search directories.

7. Select Use a relative path for the file you selected and click OK.

TestStand now reads the description and connector pane information
from the VI and updates the Description and Connector Pane section
of the Edit LabVIEW VI Call dialog box.

You can now configure the data to pass to and from the VI.

8. In the Value column of the VI Parameter Table, type
Step.Result.PassFail for the PASS/FAIL Flag output
parameter. Then, type Step.Result.ReportText in the Value
column for the Report Text output parameter.

Chapter 2 Calling LabVIEW VIs from TestStand

© National Instruments Corporation 2-5 Using LabVIEW with TestStand

When TestStand calls the VI, it will place the value that the VI outputs
in the PASS/FAIL Flag and Report Text indicators into the
Result.PassFail and Result.ReportText properties of the step.

9. For the error out output parameter, notice that TestStand
automatically fills in the Value column with the
Step.Result.Error property.

Note By default, if a VI has the standard LabVIEW error out cluster as an output
parameter, TestStand automatically passes its value into the Step.Result.Error
property for the step. You can also update the value manually.

♦ Steps 10 and 11 are for LabVIEW 6.1 users only. Proceed to Step 12 if you
are using LabVIEW 7.0 or later.

10. Click the File Browse button and select the following file:
<TestStand>\Tutorial\LabVIEW Pass-Fail

Test(Legacy).vi.

After you select the file, TestStand launches the File Not Found dialog
box to indicate that the file does not reside in any of the TestStand
search directories.

11. Select Use a relative path for the file you selected and click OK.

TestStand now reads the description and connector pane information
from the VI and updates the Description and Connector Pane section
of the Edit LabVIEW VI Call dialog box.

Notice that TestStand automatically fills in the Value column for the
Test Data and error out output parameters to return the data to the
correct subproperties of the Result property for the step.

12. Click OK to exit the Edit LabVIEW VI Call dialog box and save the
settings.

13. Select File»Save As and save the sequence file as
<TestStand>\Tutorial\Call LabVIEW VI.seq.

14. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point.

When the execution is complete, the resulting report shows that the
step passed. The VI always returns True as its Pass/Fail output
parameter.

You have completed this tutorial. In the next chapter, you will learn how to
create, edit, and debug VIs from TestStand.

© National Instruments Corporation 3-1 Using LabVIEW with TestStand

3
Creating, Editing, and
Debugging LabVIEW VIs from
TestStand

This chapter discusses how to use the LabVIEW Adapter to create new
VIs that you can call from TestStand, as well as how to edit and debug
existing VIs.

All of the tutorials in this chapter require that you have the LabVIEW
development system and TestStand installed on the same computer.
You must also have TestStand configured to run VIs using the LabVIEW
development system. Refer to Chapter 5, Configuring the LabVIEW
Adapter, for more information about selecting the LabVIEW server that
TestStand uses to run VIs.

Creating a New VI from TestStand
In this tutorial, you will learn how to create a new VI from TestStand.

1. Launch the TestStand Sequence Editor.

2. Open the following sequence file, which you created in the Creating
and Configuring a New Step Using the LabVIEW Adapter section of
Chapter 2, Calling LabVIEW VIs from TestStand, of this manual:
<TestStand>\Tutorial\Call LabVIEW VI.seq.

3. Select LabVIEW Adapter from the Adapter ring control.

4. Insert a Numeric Limit Test step after the LabVIEW Pass/Fail Test
step, and rename it LabVIEW Numeric Limit Test.

5. Right-click the new step and select Specify Module from the context
menu.

6. Click Create VI to create a new VI.

Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand

Using LabVIEW with TestStand 3-2 ni.com

♦ Step 7 is for LabVIEW 6.1 users only. Proceed to Step 8 if you are using
LabVIEW 7.0 or later.

7. In the Optional Parameters dialog box, click OK to create the VI with
no input parameters.

8. In the File dialog box that launches, browse to the
<TestStand>\Tutorial subdirectory and type LabVIEW Numeric
Limit Test.vi in the File Name control.

9. Click OK in the File dialog box.

TestStand creates a new VI based on the available code templates for
the TestStand Numeric Limit Test and then opens that VI in LabVIEW.

10. Open the block diagram for the new VI.

11. Complete this step according to the version of LabVIEW you are
using:

– If you are using LabVIEW 7.0 or later, right-click the Numeric
indicator terminal and select Create»Constant. In the new
constant, type the number 5.23.

– If you are using LabVIEW 6.1, right-click the Numeric
Measurement input to the TestStand - Create Test Data
Cluster.vi and select Create»Constant. In the new constant,
type the number 5.23.

12. Save and close the VI.

In the Edit LabVIEW VI Call dialog box, notice that TestStand has
automatically filled in the output parameters for the VI based on the
information stored in the code template for the Numeric Limit Test
step type.

13. Click OK to close the Edit LabVIEW VI Call dialog box and save the
settings.

14. Select File»Save As and save the sequence file as
<TestStand>\Tutorial\Call LabVIEW VI 2.seq.

15. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point.

When the execution is complete, the resulting report shows that the
step passed with a numeric measurement of 5.23.

Note For more information about step types and code templates, refer to Chapter 13,
Creating Custom Step Types, in the TestStand Reference Manual. For more information
about creating VIs from TestStand, refer to Chapter 5, Configuring the LabVIEW Adapter,
of this manual.

Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand

© National Instruments Corporation 3-3 Using LabVIEW with TestStand

Editing an Existing VI from TestStand
In this tutorial, you will learn how to edit an existing VI from TestStand.

1. Launch the TestStand Sequence Editor.

2. Open the following sequence file:
<TestStand>\Tutorial\Call LabVIEW VI 2.seq.

3. Right-click the LabVIEW Pass/Fail Test step and select Edit
Code.

LabVIEW becomes the active application in which
LabVIEW Pass-Fail Test.vi is open and in an editable state.

4. Open the block diagram for the VI.

5. Change the Boolean constant to False.

6. Save and close the VI.

7. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point.

When the execution is complete, the resulting report shows that the
step failed. The VI now returns False in the Pass/Fail indicator.

Debugging a VI in TestStand
In this tutorial, you will learn how to debug a VI that you call from
TestStand using the LabVIEW Adapter.

1. Launch the TestStand Sequence Editor.

2. Open the following sequence file:
<TestStand>\Tutorial\Call LabVIEW VI.seq.

3. Place a breakpoint at the LabVIEW Pass/Fail Test step by clicking
to the left of the step.

The Stop icon becomes visible to the left of the step when the
breakpoint is set.

4. Select Execute»Run MainSequence to start an execution of
MainSequence.

The execution starts and then pauses at the breakpoint.

5. When the execution pauses, click Step Into on the Sequence Editor
toolbar, which is shown in Figure 3-1.

Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand

Using LabVIEW with TestStand 3-4 ni.com

Figure 3-1. Sequence Editor Toolbar

LabVIEW becomes the active application, in which the LabVIEW
Pass-Fail Test VI is open and in a suspended state. The toolbar of the
suspended VI is shown in Figure 3-2.

Figure 3-2. Toolbar of the Suspended VI in LabVIEW

6. Open the block diagram of the VI.

7. Click Step Into or Step Over to begin single-stepping through the VI.

8. When you have finished single-stepping through the VI, click Return
to Caller to return to TestStand. The execution then pauses at the next
step in the sequence.

9. Select Debug»Resume in TestStand to complete the execution.

Note You can run the VI multiple times when the execution is in a suspended state.
However, only the results from the last run will be passed back to TestStand when you
finish debugging.

You have completed this tutorial. In the next chapter, you will learn how
TestStand passes different types of data to and from LabVIEW VIs.

1 Run
2 Step Into
3 Step Over

4 Step Out
5 Terminate Execution

1 Return to Caller 2 Step Into 3 Step Over

1 2 3 4 5

1 2 3

© National Instruments Corporation 4-1 Using LabVIEW with TestStand

4
Using LabVIEW Data Types with
TestStand

This chapter describes how TestStand converts LabVIEW data to and from
its own data types.

Data Type Conversion
TestStand provides four basic built-in data types: number, string, Boolean,
and object reference. TestStand also provides several standard named data
types including Path, Error, LabVIEWAnalogWaveform, and others. You
can create container data types that hold any number of other data types.
TestStand containers are analogous to LabVIEW clusters.

LabVIEW has a greater variety of built-in data types than TestStand. For
this reason, TestStand converts LabVIEW data types in certain ways when
calling VIs. Table 4-1 describes how TestStand handles the various
LabVIEW data types.

Table 4-1. TestStand Equivalents for LabVIEW Data Types

LabVIEW Data Type TestStand Data Type

Real number (U8, U16, U32, I8, I16, I32, SGL,
DBL, or EXT)

Number

TestStand does not support extended-precision
(EXT) floating point numbers and will convert
any EXT numbers from LabVIEW into
double-precision (DBL) numbers.

Complex number (CSG, CDB, or CXT) Number

TestStand maps each part of the complex
number to separate TestStand Number
properties. Refer to the information above about
how TestStand converts EXT numbers.

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-2 ni.com

Enum (U32, U16, or U8) Number

For input parameters, the Value column of the
Edit LabVIEW VI Call dialog box displays a
ring containing the items in the LabVIEW
Enum.

String String

Refer to the Calling VIs with String Parameters
section for more information about the String
data type.

Path Path or String

ActiveX Control, Automation Refnum, or
.NET Refnum

Object reference

You cannot pass references to .NET objects that
you create outside of LabVIEW, such as with
the TestStand .NET Adapter, to LabVIEW VIs.
You can store references to .NET objects that
you create in LabVIEW within TestStand
properties and then pass them to other
LabVIEW VIs, provided that the objects are
marshallable by ref.

Waveform LabVIEWAnalogWaveform

Digital Waveform LabVIEWDigitalWaveform

Digital Data LabVIEWDigitalData

Picture String

You must select Binary String in the Edit
LabVIEW VI Call dialog box. Refer to the
Calling VIs with String Parameters section for
more information about the String data type.

Refnum (File I/O, VI, Menu, Queue, TCP
connection, and so on)

Number

References to internal LabVIEW objects cannot
be used inside TestStand or in other types of
code modules. You can only store references to
LabVIEW objects in TestStand properties and
then pass them to other VIs.

Table 4-1. TestStand Equivalents for LabVIEW Data Types (Continued)

LabVIEW Data Type TestStand Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-3 Using LabVIEW with TestStand

Note References to external objects, such as ActiveX objects or VISA sessions, can be
used between different types of code modules.

Calling VIs with String Parameters
When you configure calls to VIs that have strings as parameters, you can
specify whether TestStand escapes the string data when reading it from the
VI or unescapes the string data when passing it to the VI. This option is
necessary because, although LabVIEW strings can contain binary data
including NULL characters, TestStand strings cannot contain NULL
characters.

Timestamp String

Error I/O Error

If a VI contains the standard error out cluster as
an output parameter, TestStand automatically
detects it and maps the output to
Step.Result.Error.

Array of x Array of TestStand (x)

Variant Anything

Cluster Container

Refer to the Calling VIs with Cluster
Parameters section for more information about
the Container data type in TestStand.

I/O Data Types (DAQmx Task Name,
DAQmx Channel Name, VISA Resource Name,
IVI Logical Name, FieldPoint IO Point, or
Motion Resource)

LabVIEWIOReference

IMAQ Session Number

Other I/O data types (DAQmx Physical Channel
Name, Terminal Name, Analog Trigger Source,
Scale Name, Device Name, or Switch Name)

String

Table 4-1. TestStand Equivalents for LabVIEW Data Types (Continued)

LabVIEW Data Type TestStand Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-4 ni.com

Use the ring control in the Type column of the VI Parameter Table for
String parameters, shown in Figure 4-1, to select ASCII String or Binary
String.

Note The default value of the ring control in the Type column for string parameters is
ASCII String. TestStand does not modify the values of ASCII strings that it passes to or
from VIs.

Figure 4-1. VI Parameter Table for String Parameters

To store a LabVIEW string that contains binary data in a TestStand
property, select Binary String in the Type column for the String parameter
of the VI. TestStand then escapes the string before storing it, substituting
hexadecimal codes for the unprintable characters in the string, such as
NULL.

To pass a string that has been escaped to a LabVIEW VI, select
Binary String in the Type column for the String parameter of the VI.
TestStand unescapes the string before passing it to the VI, substituting the
correct character values for the hexadecimal values in the escaped string.

Calling VIs with Cluster Parameters
When you configure calls to VIs that use clusters as parameters, you have
two options for how to map those clusters in TestStand. You can specify
that each cluster element maps to a different TestStand expression, or you
can specify that a TestStand data type maps to the entire LabVIEW cluster.
TestStand can also help you create a new custom data type that matches a
LabVIEW cluster.

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-5 Using LabVIEW with TestStand

Specifying Each Cluster Element Individually
To configure each cluster element individually, specify a different
TestStand expression for each element of the cluster. For example,
Figure 4-2 illustrates a VI Parameter Table in which the data source for
each element of the Input Cluster cluster is a different local variable.

Figure 4-2. Input Cluster Cluster Data Sources

Passing Existing TestStand Container Variables to LabVIEW
Instead of passing each cluster element individually, as described in the
previous section, you can also create a TestStand custom data type that
matches your LabVIEW cluster.

Use the Cluster Passing tab of the Type Properties dialog box for the new
data type to specify how TestStand maps subproperties to elements in a
LabVIEW cluster. Then, when you specify the data to pass for a cluster
parameter, you only need to specify an expression that evaluates to data
with the new data type. Refer to the TestStand Help for more information
about the Type Properties dialog box.

Figure 4-3 illustrates how the data being passed to Input Cluster is a local
variable called InputDataLocal, of the type InputData, which is shown in
Figure 4-4.

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-6 ni.com

Figure 4-3. InputDataLocal Local Variable

Figure 4-4. TestStand Custom InputData Data Type

Creating a New Custom Data Type
If you have an existing LabVIEW cluster and want to create a TestStand
custom data type that matches that cluster, TestStand automates this
process with the Create Custom Data Type From Cluster dialog box, which
is shown in Figure 4-5. This dialog box allows you to create a TestStand
custom data type, such as a container, that is analogous to a LabVIEW
cluster. Launch this dialog box by clicking the Type Palette button, which
is located in the Type column of the VI Parameter Table in the Edit
LabVIEW VI Call dialog box for those parameters that are clusters.

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-7 Using LabVIEW with TestStand

Figure 4-5. Create Custom Data Type From Cluster Dialog Box

Specify the name of the TestStand custom data type you want to create in
the Type column. Then, in the table’s Property Name column, specify the
names of the subproperties that map to the elements of the cluster. Finally,
specify where TestStand should create the type in the Create Custom Data
Type In File ring control.

Refer to Chapter 11, Type Concepts, in the TestStand Reference Manual for
more information about where TestStand stores custom data types.

Creating TestStand Data Types from LabVIEW Clusters
In this tutorial, you will learn how to create a TestStand data type that
matches a LabVIEW cluster.

Note You must have LabVIEW 7.0 or later installed in order to complete this tutorial.

1. Launch the TestStand Sequence Editor.

2. Open the following sequence file:
<TestStand>\Tutorial\Call LabVIEW VI 2.seq.

3. Select LabVIEW Adapter from the Adapter ring control.

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-8 ni.com

4. Insert a new Pass/Fail Test step into the Main step group of
MainSequence after the LabVIEW Numeric Limit Test step.

5. Rename the step Pass Container to VI.

6. Right-click the new step and select Specify Module from the context
menu.

7. Click the File Browse button and select the following file:
<TestStand>\Tutorial\VI with Cluster Input.vi.

Notice that the VI has a control labeled Input Cluster. This VI outputs
a string containing the string element of the Input Cluster
parameter in its Report Text indicator.

8. Click the Type Palette button in the Type column of the Input
Cluster parameter to launch the Create Custom Data Type From
Cluster dialog box, which you use to create a TestStand custom data
type that matches the LabVIEW cluster.

TestStand automatically maps fields in this cluster to subproperties in
a container, Input_Cluster, that is a new TestStand data type. You can
rename the data type and subproperties as necessary and specify where
TestStand stores the new data type.

Refer to the Creating a New Custom Data Type section for more
information about the Create Custom Data Type From Cluster dialog
box. For more information about custom data types, refer to the
TestStand Help and to Chapter 12, Standard and Custom Data Types,
in the TestStand Reference Manual.

9. In the Create Custom Data Type From Cluster dialog box, click Create
to accept the automatically assigned values and to create the data type
in the current sequence file.

10. In the Value column for the Input Cluster input parameter, click the
Expression Browse button to open the Expression Browser dialog
box.

11. Right-click Locals and select Insert Types»Input_Cluster to create a
local variable of type Input_Cluster. Rename the local variable
ContainerData.

12. Right-click each subproperty and select Properties to launch the
Properties dialog box for the selected property. Initialize the values of
the subproperties as follows:

a. In the Value field for the Number subproperty, type 23.

b. In the Value field for the String subproperty, type My String
Data.

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-9 Using LabVIEW with TestStand

13. In the Expression Browser dialog box, enter
Locals.ContainerData in the Expression field and then click OK
to return to the Edit LabVIEW VI Call dialog box.

Notice that the Value column for the Input Cluster parameter now
shows Locals.ContainerData.

14. Type Step.Result.ReportText in the Value column for the
ReportText output parameter.

15. Click OK to close the Edit LabVIEW VI Call dialog box and return to
the Sequence File window.

When TestStand calls the VI, it will pass the values in the
ContainerData local variable to the Input Cluster control on the VI
and output the string element of the Input Cluster parameter to the
ReportText property of the step.

16. Select Execute»Single Pass to start a new execution of the sequence
using the Single Pass Execution entry point.

When the execution is complete, the resulting report shows the text
returned from VI with Cluster Input.vi.

You have completed this tutorial. In the next chapter, you will learn how to
configure the LabVIEW Adapter.

© National Instruments Corporation 5-1 Using LabVIEW with TestStand

5
Configuring the LabVIEW
Adapter

In this chapter, you will learn how to configure the various settings of the
LabVIEW Adapter. To access the LabVIEW Adapter Configuration dialog
box, you must first launch the general Adapter Configuration dialog box by
selecting Adapters from the Configure menu. Then, select LabVIEW
from the Adapter column and click Configure.

Selecting a LabVIEW Server
The TestStand LabVIEW Adapter can run VIs using any of the following
LabVIEW environments, or servers: the LabVIEW development system,
the LabVIEW Run-Time Engine, or a LabVIEW executable built with an
ActiveX server enabled.

Use the LabVIEW Adapter Configuration dialog box, which is shown in
Figure 5-1, to select the server you want TestStand to use.

Figure 5-1. LabVIEW Adapter Configuration Dialog Box

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-2 ni.com

• LabVIEW Run-Time Engine—Provides optimal performance when
calling LabVIEW VIs. This option does not allow you to create or edit
VIs from TestStand or debug VIs that TestStand calls.

You must have the LabVIEW Run-Time Engine 7.0 or later on the
same computer as TestStand in order to use this option.

• Development System—Allows you to create or edit VIs from
TestStand and debug VIs that TestStand calls in LabVIEW.

You must have the LabVIEW development system installed on the
same computer as TestStand to use this option.

• Other Executable—Uses a LabVIEW executable that you build with
LabVIEW’s Build Application or Shared Library (DLL) functionality.
This option does not allow you to create or edit VIs from TestStand or
debug VIs that TestStand calls.

To use this option, enter the name of the ActiveX server associated
with your LabVIEW executable.

Tip The name of the ActiveX server is the same name that you entered in the LabVIEW
Application Builder as the Server Name on the Application tab of the Build Application or
Shared Library (DLL) dialog box in LabVIEW.

The executable must be installed and registered on the same computer
as TestStand to use this option. To register your executable as an
ActiveX server, launch the executable once. You can find an example
server VI and application build script in the following location:
<TestStand>\Components\NI\RuntimeServers\LabVIEW.

Note If you select LabVIEW Run-Time Engine or Other Executable as your TestStand
server, you must fully deploy your VIs before calling them from TestStand. The LabVIEW
Run-Time Engine or built executable must be able to find the complete hierarchies of your
VIs, including any subVIs from the LabVIEW vi.lib directory. Refer to Chapter 14,
Deploying TestStand Systems, in the TestStand Reference Manual for more information
about deploying your VIs for use with TestStand.

Per-Step Configuration of the LabVIEW Server
You can direct TestStand to always use the LabVIEW Run-Time Engine to
execute a step. Make this selection in the Advanced Settings dialog box,
which you launch by clicking the Advanced button on the Edit LabVIEW
VI Call dialog box. The Advanced Settings dialog box is illustrated in
Figure 5-2.

Chapter 5 Configuring the LabVIEW Adapter

© National Instruments Corporation 5-3 Using LabVIEW with TestStand

Figure 5-2. Advanced Settings Dialog Box

When you enable the Always Run VI in LabVIEW Run-Time Engine
option, TestStand selects the appropriate version of the LabVIEW
Run-Time Engine according to the version of LabVIEW in which the VI
was last compiled.

Note The Always Run VI in LabVIEW Run-Time Engine option overrides the global
LabVIEW Server Selection option in the LabVIEW Adapter Configuration dialog box.
Use this option when you create tools and step types that use the LabVIEW Adapter that
you do not want to be affected by the global LabVIEW Server Selection option.

Reserve Loaded VIs for Execution
Enable the Reserve Loaded VIs for Execution option in the LabVIEW
Adapter Configuration dialog box to instruct TestStand to reserve any VIs
that TestStand loads for calling with the LabVIEW Adapter.

This option reduces the amount of time required for TestStand to call VIs.
Additionally, enabling the Reserve Loaded VIs for Execution option makes
references that you create in a VI you call from TestStand—such as I/O,
ActiveX, and synchronization references—persist across calls to other VIs.
You can store these references in a TestStand property and pass them to
subsequent VIs that you call from TestStand.

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-4 ni.com

While reserving VIs with this option reduces the amount of time required
for TestStand to call the VIs, this option also blocks other applications from
using any VIs loaded by TestStand, including subVIs of the VIs that
TestStand calls directly.

If you open a reserved VI in LabVIEW, you will notice that the Run arrow
becomes visible.

This arrow indicates that the VI is reserved and cannot be edited. To edit a
VI that TestStand has reserved, select Edit Code from the step’s context
menu to open the VI in TestStand. You can also select File»Unload All
Modules from the Sequence Editor before opening the VI in LabVIEW.

You must also ensure that you close any references you create in your VIs
once you are finished with them. If TestStand reserves VIs when it loads
them, LabVIEW will not automatically close the references until TestStand
unloads the VIs that created the references. Failing to close the references
could result in a memory leak in your test system.

Code Template Policy
The Code Template Policy section of the LabVIEW Adapter Configuration
dialog box allows you to specify whether TestStand allows you to create
new test VIs using old, or legacy, VI templates. These legacy VIs are
callable from previous versions of TestStand and the LabVIEW Test
Executive. Refer to Appendix C, Calling Legacy VIs, for more information
about legacy TestStand VIs.

If you have configured the LabVIEW Adapter using the Allow Only New
Templates (Requires LabVIEW 7.0 or Greater) option and then create a
new VI from the Edit LabVIEW VI Call dialog box, TestStand either
immediately creates a new VI based on the code template for the specified
step type or, if the step type has multiple code templates available, launches
the Choose Code Template dialog box illustrated in Figure 5-3, from which
you select the code template to use for the new VI.

Chapter 5 Configuring the LabVIEW Adapter

© National Instruments Corporation 5-5 Using LabVIEW with TestStand

Figure 5-3. Choose Code Template Dialog Box

If you have configured the LabVIEW Adapter using the Allow Only
Legacy Templates option, TestStand launches the Optional Parameters
dialog box, in which you choose optional parameters such as Input Buffer,
Sequence Context ActiveX Pointer, or Invocation Info that you want to
include as input parameters for the VI, as shown in Figure 5-4.

Figure 5-4. Optional Parameters Dialog Box

If you have configured the LabVIEW Adapter using the Allow Legacy and
New Templates option, TestStand launches the Choose Code Template
dialog box. You can choose a new template from the list of available
templates for the step type, or enable the Show Legacy Template option to
choose the optional parameters that you want to use as input parameters for
the VI. This dialog box is illustrated in Figure 5-5.

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-6 ni.com

Figure 5-5. Choose Code Template Dialog Box

Legacy VI Settings
From within the LabVIEW Adapter Configuration dialog box, click
Legacy VI Settings to launch the Legacy VI Settings dialog box, in which
you can configure settings relevant to calling legacy test VIs. The Legacy
VI Settings dialog box contains expressions that the LabVIEW Adapter
evaluates to generate values to pass to the VI in the various Invocation Info
cluster fields.

Legacy VIs can use the Invocation Info cluster as an optional input. Refer
to Appendix C, Calling Legacy VIs, for more information about the
Invocation Info cluster.

© National Instruments Corporation 6-1 Using LabVIEW with TestStand

6
Creating Custom User Interfaces
in LabVIEW

This chapter discusses the tools that TestStand provides for creating custom
operator interfaces and for creating user interfaces for other components,
such as custom step types.

Tip National Instruments recommends that you read Chapter 9, Creating Custom
Operator Interfaces, of the TestStand Reference Manual, before proceeding with this
chapter. For additional information, refer to the TestStand User Interface Controls
Reference Poster for an illustrated overview of the TestStand User Interface Controls.

Note Unless otherwise noted, all controls and VIs described in this chapter require
LabVIEW 7.0 or later.

Note The TestStand User Interface Controls are not supported in Windows 98.

TestStand User Interface Controls
The TestStand User Interface (UI) Controls are located in the
Controls»All Controls»TestStand palette in LabVIEW, which is
illustrated in Figure 6-1.

Figure 6-1. User Interface Controls Palette

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-2 ni.com

When you place these controls on the front panel of a VI, you can program
them using the LabVIEW ActiveX functionality.

You can also configure the controls interactively using the LabVIEW
Property Browser or any property pages featured by the controls. To open
the LabVIEW Property Browser, right-click any control and select
Property Browser. To open property pages, right-click any eligible control
and select <Control Name>»Properties.

For general information about programming the TestStand API from
LabVIEW, refer to Appendix B, Using the TestStand ActiveX APIs in
LabVIEW.

TestStand Utility Library
The TestStand Utility Library VIs are the LabVIEW versions of the
functions in the TestStand Utility Functions Library, or TSUtil. These VIs
are located in the Functions»All Functions»TestStand palette, which is
illustrated in Figure 6-2.

Figure 6-2. TestStand Utility Library Palette

The TestStand Utility Library VIs assist user interface developers with the
following tasks:

• Inserting menu items that automatically execute commands provided
by the TestStand UI Controls.

• Localizing the strings on your user interface. These VIs are compatible
with LabVIEW 6.1 or later.

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-3 Using LabVIEW with TestStand

• Making dialog boxes that are launched by LabVIEW VIs modal to
TestStand applications. These VIs are compatible with LabVIEW 6.1
or later.

• Checking whether an execution that calls a VI has stopped. These VIs
are compatible with LabVIEW 6.1 or later.

• Setting and getting the values of TestStand properties and variables.

To access the help for a TestStand Utility Library VI, drop the VI onto a
LabVIEW diagram, right-click it and then select Help from the context
menu.

Creating Custom Operator Interfaces
Operator interfaces that use the TestStand UI Controls typically perform
the following basic operations:

• Configure connections, commands, and other control settings

• Register to handle events sent by the controls

• Start TestStand

• Wait in a main event loop until you close the application

• Shut down TestStand

Operator interfaces may also have a menu bar containing items that invoke
TestStand commands, as well as non-TestStand items.

For additional information about creating a TestStand operator interface
using the TestStand UI Controls in LabVIEW, refer to the example operator
interfaces included with TestStand. Begin with the simple operator
interface example, <TestStand>\OperatorInterfaces\NI\Simple\
LabVIEW\TestExec.llb\Simple OI - Top-Level VI.vi. For a
more advanced example that includes menus and localization, refer to the
full-featured example, <TestStand>\OperatorInterfaces\NI\
Full-Featured\LabVIEW\TestExec.llb\Full OI - Top Level

VI.vi.

To customize the example operator interfaces, copy the operator interface
directory and its contents from the NI subdirectory to the
<TestStand>\OperatorInterfaces\User subdirectory before
beginning your customizations. This ensures that newer installations of
TestStand will not overwrite your custom operator interface.

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-4 ni.com

Note Example operator interfaces that use the TestStand API instead of the TestStand UI
Controls are available in the <TestStand>\OperatorInterfaces\NI\TestStand
2.0.1 Operator Interfaces (Old) directory. These operator interfaces are
compatible with LabVIEW 6.1 or later.

Configuring the TestStand UI Controls
Refer to the following example operator interface VIs for examples of
configuring connections, commands, and other settings for the TestStand
UI Controls:

• Simple OI - Configure Application Manager.vi

• Simple OI - Configure SequenceFileView Manager.vi

• Simple OI - Configure ExecutionView Manager.vi

• Full OI - Configure StatusBar.vi

• Full OI - Configure SequenceFileView Manager.vi

• Full OI - Configure ListBar.vi

• Full OI - Configure ExecutionView Manager.vi

Handling Events
TestStand UI Controls generate events to notify your application of user
input and application events, such as the completion of an execution.
To handle an event in LabVIEW, you register a callback VI, which is
automatically called when the control generates the event. Follow these
steps to perform this registration using the Register Event Callback
function, which is located in the ActiveX subpalette of the LabVIEW Full
or Professional Development System:

1. Wire the reference to the control that sends the event you want to
handle to the Event input of the Register Event Callback function.

2. Click the Event input terminal and select the specific event you want
to handle from the list.

3. If you want to pass custom data to the callback VI, wire the custom
data to the User Parameter input of the Register Event Callback
function. The User Parameter input can be any data type.

4. Right-click the VI Ref input of the Register Event Callback function
and select Create Callback VI.

LabVIEW creates an empty callback VI with the correct input
parameters for the particular event, including an input parameter for
any custom data that you wired to the User Parameter input in Step 3.

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-5 Using LabVIEW with TestStand

5. Save the new callback VI.

The block diagram containing the Register Event Callback function
now shows a Static VI Reference node wired to the VI Ref input of the
function. This node returns a strictly-typed reference to the new
callback VI.

6. Complete the diagram of the callback VI so that it performs the
operation you specify when the control generates the event.

Note When your application is finished handling events for the control, it must close the
event callback refnum output of the Register Event Callback function using the Unregister
for Events function, which is located in the Application Control»Events palette.

Figure 6-3 illustrates registering a callback VI to handle the Break event for
the TestStand Application Manager control.

Figure 6-3. Register For Break Event

You can register to handle multiple events using the same Register Event
Callback function by resizing the node to show multiple sets of input
terminals. Refer to the following example operator interface VIs for
examples of registering to handle events from the TestStand UI Controls:

• Simple OI - Configure Event Callbacks.vi

• Full OI - Configure Event Callbacks.vi

Starting TestStand
Start TestStand by invoking the Application Manager control Start method.
Refer to the following example operator interfaces for examples of using
this method:

• Simple OI - Top-Level VI.vi

• Full OI - Top-Level VI.vi

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-6 ni.com

The Main Event Loop and Shutting Down TestStand
Operator interface applications wait in a main event loop after starting
TestStand. This main event loop can handle many events, such as menu
selections and LabVIEW control value changes. However, the main event
loop must at least handle the events that will stop the operator interface
application.

To stop an operator interface application, click the Close box or execute the
Exit command through either a TestStand menu or a Button control.

When you click the Close box, the Event structure in the main event loop
handles the <VI Name>:Panel Close? event. The block diagram that
handles the event then invokes the Application Manager control Shutdown
method and discards the event. If the Shutdown method returns True,
indicating that TestStand is ready to shut down, the main event loop stops.
If the Shutdown method returns False, TestStand cannot shut down until
the executions complete or sequence files are unloaded. In this case, the
main event loop continues to wait until TestStand can shut down. When
TestStand is ready, the Application Manager control sends the
ExitApplication event.

The callback VI for the Application Manager control ExitApplication event
generates a LabVIEW User event called the Quit Application event. This
event, which is created and handled in the example operator interface VIs,
informs the main event loop that it can stop.

Refer to the following example operator interface VIs for examples of the
main event loop and shutting down TestStand. These VIs also provide
examples of creating, generating, and handling the Quit Application event.

• Simple OI - Top-Level VI.vi

• Simple OI - ExitApplication Event Callback.vi

• Full OI - Top-Level VI.vi

• Full OI - Create Quit Application Event.vi

• Full OI - ExitApplication Event Callback.vi

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-7 Using LabVIEW with TestStand

Menu Bars
The TestStand Utility Library provides the following VIs for creating and
handling menu items that execute TestStand UI Control commands:

• TestStand - Insert Commands in Menu.vi

• TestStand - Cleanup Menus.vi

• TestStand - Remove Commands From Menus.vi

• TestStand - Execute Menu Command.vi

Since maintaining the current state of the menu bar can be very difficult,
you should only handle the menu bar when it is required. The Event
structure in the main event loop handles the <VI Name>:Menu Activation?
event to determine when you open a menu or select a shortcut key that may
be linked to a menu item. The block diagram that handles this event can
then rebuild the menu bar.

To handle when the user makes a menu selection, the Event structure in
the main event loop handles the <VI Name>:Menu Selection (User) event.
The diagram that handles the event calls TestStand - Execute Menu
Command.vi to execute the appropriate TestStand command. If the item is
not a TestStand menu item, the diagram that handles the event manually
handles the menu selection.

Refer to the following example operator interface VIs for examples of
rebuilding the menu bar and handling menu selections:

• Full OI - Top-Level VI.vi

• Full OI - Rebuild Menu Bar.vi

Localization
The TestStand UI Controls and TestStand Utility Library provide tools that
localize your operator interfaces based on the TestStand language setting.
Use the following Utility Library VIs to localize your operator interface:

• TestStand - Get Resource String.vi

• TestStand - Localize Menu.vi

• TestStand - Localize Front Panel.vi

Refer to the following example operator interface VIs for examples of
localizing operator interface panels:

• Full OI - Localize Operator Interface.vi

• Full OI - About Box.vi

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-8 ni.com

Other User Interface Utilities

Making a Dialog VI Modal to TestStand
VIs that TestStand calls may display dialog boxes that are modal to
TestStand application windows such as the TestStand Sequence Editor or
a TestStand Operator Interface.

The TestStand Utility Library provides two VIs that make a dialog box
modal to TestStand application windows: TestStand - Start Modal
Dialog.vi and TestStand - End Modal Dialog.vi.

The following example demonstrates this technique:
<TestStand>\Examples\ModalDialogs\LabVIEW.

Checking For Stopped Execution
VIs called by TestStand may display dialog boxes or perform other lengthy
operations. Therefore, it can be useful to have those VIs periodically check
whether their parent execution has been terminated or aborted. This allows
the VIs to stop gracefully and allows their parent execution to terminate or
abort.

The TestStand Utility Library provides the following VIs that enable VIs
called by TestStand to verify whether their calling execution has been
stopped:

• TestStand - Initialize Termination Monitor.vi

• TestStand - Check Termination Monitor Status.vi

• TestStand - Close Termination Monitor.vi

You can also refer to the dialog box VIs in the following examples for
a demonstration of this technique:

• <TestStand>\Examples\Demo\LabVIEW\Computer
Motherboard Test

• <TestStand>\Examples\Demo\LabVIEW\Auto

© National Instruments Corporation A-1 Using LabVIEW with TestStand

A
Calling LabVIEW VIs on Remote
Systems

TestStand allows you to directly call LabVIEW VIs on remote computers.
These computers can be machines running the LabVIEW development
system or a LabVIEW executable, or they can be PXI controllers running
the LabVIEW Real-Time (RT) module. Because TestStand uses the
LabVIEW VI Server to run VIs remotely, these computers can use any
platform that LabVIEW supports, including Linux, Solaris, and Mac OS.

To call a VI remotely, you must configure the TestStand step to specify that
the call occurs on a remote computer. In addition, you must configure the
remote computer to allow TestStand to call VIs that are located on that
computer.

Note You must configure the computer that is running TestStand so that it has network
access to the remote computer running the LabVIEW VI Server.

Configuring a Step to Run Remotely

1. Click Advanced on the Edit LabVIEW VI Call dialog box to launch
the Advanced Settings dialog box.

Use the Advanced Settings dialog box to specify the name, or an
expression that evaluates to the name, of the remote computer on
which you want to run the VI.

Note The VI must be present on the local computer in order for TestStand to be able to
read the connector pane information from the VI.

2. If the remote computer is running the LabVIEW development system
or a LabVIEW executable, specify the path to where the VI is located
on the remote computer in the Remote VI Path text box, which is
shown in Figure A-1.

If your remote computer is a PXI controller running LabVIEW RT,
TestStand will either download the VI to the remote computer or load

Appendix A Calling LabVIEW VIs on Remote Systems

Using LabVIEW with TestStand A-2 ni.com

the VI using the Remote VI Path that you specified in the Advanced
Settings dialog box.

Note TestStand skips this step if the VI is already present in memory on the controller at
the time TestStand loads the code module for the step.

Figure A-1. Advanced Settings Dialog Box

Configuring a LabVIEW VI Server to Run VIs Remotely
The LabVIEW development system or built executable must be running
and configured on the remote machine in order to allow VI calls through
the TCP/IP protocol of the VI Server. Configure these settings on the
VI Server: Configuration property page of the Options dialog box in
LabVIEW (Tools»Options), which is shown in Figure A-2.

Appendix A Calling LabVIEW VIs on Remote Systems

© National Instruments Corporation A-3 Using LabVIEW with TestStand

Figure A-2. VI Server: Configuration Property Page of the Options Dialog Box

1. In the VI Server: Configuration property page of the Options dialog
box, enable the TCP/IP protocol and the Allow VI calls options.

You can also use this dialog box to specify the TCP/IP port that the
server uses.

Note The port specified in LabVIEW must be the same port that you specified in the
Advanced Settings dialog box, which you access from the Edit LabVIEW VI Call
dialog box.

2. Configure any computers that you want to allow access to the
LabVIEW VI Server in the VI Server: TCP/IP Access property page
of the Options dialog box, which is shown in Figure A-3.

You can also use this dialog box to specify specific computers or entire
domains that can call VIs on the server machine.

Appendix A Calling LabVIEW VIs on Remote Systems

Using LabVIEW with TestStand A-4 ni.com

Figure A-3. VI Server: TCP/IP Access Property Page of the Options Dialog Box

3. Configure the VIs that you want to allow to be called through the
LabVIEW VI Server in the VI Server: Exported VIs property page of
the Options dialog box, which is shown in Figure A-4.

Appendix A Calling LabVIEW VIs on Remote Systems

© National Instruments Corporation A-5 Using LabVIEW with TestStand

Figure A-4. VI Server: Exported VIs Property Page of the Options Dialog Box

Note All VIs that you want to call remotely from TestStand must be exported. The default
setting in LabVIEW is to export all VIs, and is indicated by an asterisk (*).

Configuring a LabVIEW RT Server to Run VIs
To perform the configuration described in the Configuring a LabVIEW VI
Server to Run VIs Remotely section, launch LabVIEW on the host
computer. Next, select the appropriate RT target computer and select
Tools»RT Target <IP Address/Host Name> Options.

In addition, you must also configure the RT target computer to allow access
to the computer running TestStand if you want TestStand to download VIs
to the RT target computer.

Perform this configuration on the RT Target: Access property page of the
Options dialog box in LabVIEW, which is illustrated in Figure A-5.

Appendix A Calling LabVIEW VIs on Remote Systems

Using LabVIEW with TestStand A-6 ni.com

Figure A-5. RT Target: Access Property Page of the Options Dialog Box

Note When you have finished configuring your target computer, be sure to untarget the
PXI controller.

© National Instruments Corporation B-1 Using LabVIEW with TestStand

B
Using the TestStand ActiveX
APIs in LabVIEW

In some cases you will need to program the TestStand API or TestStand
UI Controls from your LabVIEW test and user interface VIs. This chapter
contains information about programming with the TestStand API and
TestStand UI Controls from LabVIEW.

Chapter 19, Windows Connectivity, in the LabVIEW User Manual contains
fundamental information about ActiveX concepts and how to use
LabVIEW as an ActiveX client. National Instruments recommends that
you become familiar with this material before proceeding with this chapter.

Invoking Methods
TestStand objects have methods that you invoke to perform an operation or
function on them. In LabVIEW, you invoke methods using the Invoke
node, which you can access from the ActiveX palette. The block diagram
in Figure B-1 illustrates invoking the UnloadModules method of a
Sequence object to unload all code modules in the sequence.

Figure B-1. Invoking the UnloadModules Method

Accessing Built-In Properties
TestStand defines a number of built-in properties that are always present for
objects such as steps and sequences. Nearly every kind of object in
TestStand has built-in properties, which are static with respect to the
TestStand API. This means that the TestStand API has knowledge about
each of these properties, which it uses to allow you to access these

Appendix B Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand B-2 ni.com

properties in the programming language you specify. Examples of built-in
properties are the Name property of the Sequence object and the Sequence
property of the SequenceContext object.

In LabVIEW, you access built-in properties using the Property node,
which is available on the ActiveX palette.

The block diagram in Figure B-2 illustrates obtaining the value of the
Name property from a Sequence object.

Figure B-2. Obtaining the Value of the Name Property from a Sequence Object

The block diagram in Figure B-3 illustrates obtaining a reference to a step
of a sequence referenced by a Sequence object.

Figure B-3. Obtaining a Reference to a Step of a Sequence Referenced by
a Sequence Object

Accessing Dynamic Properties
TestStand allows you to define your own custom step properties, sequence
local variables, sequence file global variables, and station global variables.
Because the TestStand API has no knowledge of the variables and custom
step properties that you define, these variables and properties are dynamic
with respect to the TestStand API. The TestStand API provides the
PropertyObject class so that you can access dynamic properties and
variables from within code modules. Instead of using defined constants,
use lookup strings to identify specific properties by name.

Appendix B Using the TestStand ActiveX APIs in LabVIEW

© National Instruments Corporation B-3 Using LabVIEW with TestStand

To access dynamic properties of an object, you must first convert the
specific object reference to a PropertyObject reference using the object’s
AsPropertyObject method. Then, use the PropertyObject interface to
access custom properties of the object by using a lookup string to specify
the specific custom property.

The block diagram in Figure B-4 illustrates using the GetValString method
on the PropertyObject interface of a Step object to obtain the error message
value for the current step.

Figure B-4. Using the GetValString Method to Obtain the Error Message Value for
the Current Step

You can easily access dynamic properties of a SequenceContext object
by using one of the following polymorphic VIs which are included in
TestStand: TestStand - Get Property Value.vi and TestStand -
Set Property Value.vi. These VIs are located in the TestStand
subpalette of the LabVIEW Functions palette.

The block diagram in Figure B-5 illustrates obtaining the error message
value for the current step using TestStand - Get Property
Value.vi.

Figure B-5. Obtaining the Error Message for the Current Step

Releasing ActiveX References
When a method or property returns an ActiveX reference, you must release
it using the Automation Close function in LabVIEW, which is located in the
ActiveX palette.

Appendix B Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand B-4 ni.com

Note If you fail to release the ActiveX reference, LabVIEW will not release it for you until
your VI hierarchy finishes executing. Repeatedly opening large numbers of references
without closing them can cause your system to run out of memory.

Using TestStand API Constants and Enumerations
Some TestStand API methods require string and numeric constant input
arguments. The allowed values of these arguments are organized into
groups that correspond to different properties and methods. For example,
the PropertyObject.SetValNumber method has an options input argument
that accepts many different numeric constants.

It can be difficult to remember all of the available string and numeric
constants for the TestStand API properties and methods. To facilitate
programming with the TestStand API within LabVIEW VIs, TestStand
provides two enumerated constant VIs—TestStand API String

Constants.vi and TestStand API Numeric Constants.vi—which
are located in the TestStand subpalette of the LabVIEW Functions palette.

Use the TestStand API String Constants VI to quickly locate and select the
string constant arguments for a property or method in the API. Use the
TestStand API Numeric Constants VI to locate and select the various
numeric constant arguments that you can use with TestStand API properties
and methods. Use both of these VIs in conjunction with the information in
the TestStand Help regarding constants associated with the TestStand API
methods and properties.

You can use the OR function in LabVIEW to combine more than one of the
numeric constants. If you need to combine more than two of the constants,
use the Compound Arithmetic function with its mode set to OR.

The block diagram in Figure B-4 shows how to use the TestStand API
Numeric Constants VI to obtain the value of the PropOptions_NoOptions
constant.

In addition, some methods in the TestStand API require enum input
arguments, For these methods, right-click the input parameter on the
Invoke node in LabVIEW and select Create»Constant to create a
LabVIEW ring constant. Then, select the desired value in the resulting
constant.

Appendix B Using the TestStand ActiveX APIs in LabVIEW

© National Instruments Corporation B-5 Using LabVIEW with TestStand

Getting a Different Interface for a TestStand Object
In some cases, you may need to obtain a different interface for a TestStand
object than the one you currently have. In ActiveX/COM terminology, this
action is known as a QueryInterface.

For example, if you have a Module reference to a LabVIEWModule object
and need to access its LabVIEWModule interface, perform a
QueryInterface on the Module object to obtain that interface. In LabVIEW,
use the Variant To Data function, which is located on the ActiveX palette,
on the reference to accomplish this task.

The block diagram in Figure B-6 shows how to obtain the
LabVIEWModule interface of a Module object to get the VIDescription
property of the object. Note that you must release the reference returned by
the Variant To Data function when you are finished with it.

Figure B-6. Converting a Module Reference to the LabVIEWModule Type

Acquiring a Derived Class from
the PropertyObject Class

In some cases, you may need to obtain a reference to a TestStand object
using the PropertyObject class methods. You may then want to access one
of the static properties of that TestStand object, such as obtaining the run
mode for the third step in the Main step group of the currently executing
sequence. For methods in the PropertyObject class that can return objects
derived from PropertyObject, you must acquire the derived interface for the
object to access the built-in properties and methods of the derived class.
Acquire the derived interface for an object using the method described in
the Getting a Different Interface for a TestStand Object section.

Appendix B Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand B-6 ni.com

The block diagram in Figure B-7 illustrates obtaining a reference to a Step
object from a SequenceContext object using a lookup string.

Figure B-7. Obtaining a Reference to a Step Object from a SequenceContext Object
Using a Lookup String

Setting the Preferred Execution System
for LabVIEW VIs

If your VI calls synchronous methods of the TestStand API, you may need
to correctly set the LabVIEW Preferred Execution System for your VIs.
If you call synchronous methods that will not return until the LabVIEW
server executes a VI on behalf of TestStand, the VI that calls these methods
and the VI that TestStand is attempting to run using the LabVIEW VI
Server cannot be set to run in the same LabVIEW execution system. If the
VIs are set to run in the same execution system, you will experience a
deadlock since the execution system that the VI needs to run in will be
consumed by the execution of the synchronous TestStand method. In
addition, since LabVIEW handles ActiveX communication through its user
interface execution system, neither of the VIs in this scenario may be set to
run in the user interface execution system.

For example, you can have a LabVIEW code module that calls the
Engine.NewExecution method followed by the Engine.WaitForEnd
method, and a new execution that calls LabVIEW code modules. Deadlock
can occur if either of the VIs in this scenario use Same As Caller or User
Interface as its preferred execution system. In addition, both VIs in this
scenario must use different preferred execution system settings. The
LabVIEW execution system is configured in the VI Properties dialog box
for each individual VI.

© National Instruments Corporation C-1 Using LabVIEW with TestStand

C
Calling Legacy VIs

Prior to version 3.0, TestStand could only call VIs with a specific set of
controls and indicators. Using TestStand 3.0 and LabVIEW 7.0, you can
now call VIs with a wide variety of connector panes, including VIs with
legacy configurations.

If you are using LabVIEW 6.1, you can only call legacy VIs.

Format of Legacy VIs
The Test Data cluster and error out cluster indicators are required outputs
for all legacy-style VIs. The Input Buffer, Invocation Info, and Sequence
Context controls are optional inputs to legacy VIs. Legacy VIs can contain
any combination of these controls.

TestStand does not require a particular connector pane pattern or require
that the controls and indicators be assigned to specific terminals. TestStand
only requires that you assign the controls and indicators to some terminal
on the connector pane of the VI.

While you would usually create new VIs from the Edit LabVIEW VI Call
dialog box for steps that use the LabVIEW Adapter, TestStand can also
create legacy-style VIs. Chapter 5, Configuring the LabVIEW Adapter,
details how to configure the LabVIEW Adapter for creating new
legacy-style VIs.

The following sections discuss each of the required and optional VI
controls.

Note The specific control and indicator labels described in this section are required.
Do not modify them in any way.

Test Data Cluster
The LabVIEW Adapter must use the Test Data cluster to return result data
from the VI to TestStand. TestStand can then use the data to make a
PASS/FAIL determination.

Appendix C Calling Legacy VIs

Using LabVIEW with TestStand C-2 ni.com

Figure C-1 shows the Test Data cluster.

Figure C-1. Test Data Cluster

Table C-1 lists the elements of the Test Data cluster, their types, and
descriptions of how they are used by the LabVIEW Adapter.

Table C-1. Test Data Cluster Elements

Element Type Description

PASS/FAIL Flag The test VI sets this element to
indicate whether the test passed.
Valid values are True (PASS) or
False (FAIL). The adapter
copies its value into the
Step.Result.PassFail
property if the property exists.

Numeric
Measurement

Numeric measurement that the
test VI returns. The adapter copies
this value into the
Step.Result.Numeric
property if the property exists.

Appendix C Calling Legacy VIs

© National Instruments Corporation C-3 Using LabVIEW with TestStand

The LabVIEW Adapter also supports an older version of the Test Data
cluster from the LabVIEW Test Executive product. The Test Data cluster
in the LabVIEW Test Executive does not contain a Report Text element.
Instead, the cluster contains two string elements, Comment and User
Output.

Table C-2 lists the elements of the older Test Data cluster, their types, and
description of how they are used by the LabVIEW Adapter.

String
Measurement

String value that the test VI
returns. The adapter copies the
string into the
Step.Result.String property
if the property exists.

Report Text Output message to display in the
report. The adapter copies the
message value into the
Step.Result.ReportText
property if the property exists.

Table C-2. Old Test Data Cluster Elements from the LabVIEW Test Executive

Element Type Description

Comment Output message to display in the
report. The adapter copies the
message value into the
Step.Result.ReportText
property if the property exists.

User Output String value that the test VI
returns. The adapter dynamically
creates the step property
Step.Result.UserOutput,
and copies the string value to the
step property.

Table C-1. Test Data Cluster Elements (Continued)

Element Type Description

Appendix C Calling Legacy VIs

Using LabVIEW with TestStand C-4 ni.com

Error Out Cluster
TestStand must use the contents of the error out cluster to determine
whether a run-time error has occurred and to take appropriate action, if
necessary. When you create a VI, use the standard LabVIEW error out
cluster, shown in Figure C-2.

Figure C-2. Standard Error Out Cluster

Table C-3 lists the elements of the error out cluster, their types, and
descriptions of how they are used by the LabVIEW Adapter.

Input Buffer String Control
Use the Input Buffer string control to pass input data directly to the VI.
The LabVIEW Adapter automatically copies the contents of the
Step.InBuf property to the Input Buffer control if the property exists.

Table C-3. Error Out Cluster Elements

Element Type Description

status The test VI must set this to True if
an error occurs. The adapter copies
the output value into the
Step.Result.Error.Occurred
property if the property exists.

code The test VI can set this element to a
non-zero value if an error occurs.
If the property exists, the adapter
copies the output value into
Step.Result.Error.Code.

source The test VI can set this element to a
descriptive string if an error occurs.
If the property exists, the adapter
copies the output value into
Step.Result.Error.Msg.

Appendix C Calling Legacy VIs

© National Instruments Corporation C-5 Using LabVIEW with TestStand

Invocation Information Cluster
Use the Invocation Information cluster to pass additional information to
the VI. Figure C-3 shows the Invocation Information cluster.

Figure C-3. Invocation Information Cluster

Table C-4 lists the elements of the Invocation Information cluster, their
types, and descriptions of how the LabVIEW Adapter assigns a value to
each cluster element.

Table C-4. Invocation Information Cluster Elements

Element Type Description

Test Name Contains the name of the step that
invokes the VI.

loop # Contains the loop count if the step
that invokes the VI is looping on
the step.

Sequence Path Contains the name and absolute
path of the sequence file that is
running the VI.

Appendix C Calling Legacy VIs

Using LabVIEW with TestStand C-6 ni.com

Sequence Context Control
Use the Sequence Context control to obtain a reference to the TestStand
SequenceContext object. You can use the sequence context to access all the
objects, variables, and properties in the execution. Refer to the TestStand
Help for more information about using the sequence context from a VI.

UUT Info Contains the value of the
RunState.Root.Locals.
UUT.SerialNumber property
if the property exists. Refer to
Chapter 5, Configuring the
LabVIEW Adapter, for more
information about how to
configure this setting.

UUT # Contains the value of the
RunState.Root.Locals.
UUT.UUTLoopIndex property
if the property exists. Refer to
Chapter 5, Configuring the
LabVIEW Adapter, for more
information about how to
configure this setting.

Table C-4. Invocation Information Cluster Elements (Continued)

Element Type Description

© National Instruments Corporation D-1 Using LabVIEW with TestStand

D
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards,
conformity documentation, example code, tutorials and
application notes, instrument drivers, discussion forums,
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/support. Our online system helps you define your
question and connects you to the experts by phone, discussion
forum, or email.

• Training—Visit ni.com/training for self-paced tutorials, videos,
and interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 Using LabVIEW with TestStand

Glossary

A

abort To stop an execution without running any of the steps in the Cleanup step
groups of the sequences in the call stack. When you abort an execution,
report generation does not occur.

ActiveX
(Microsoft ActiveX)

Set of Microsoft technologies for reusable software components. Formerly
called OLE.

ActiveX control A reusable software component that adds functionality to any compatible
ActiveX control container.

ActiveX server Any executable code that makes itself available to other applications
according to the ActiveX standard. ActiveX implies a client/server
relationship in which the client requests objects from the server and asks
the server to perform actions on the objects.

adapter If an adapter is specific to an application development environment (ADE),
the adapter knows how to open the ADE, how to create source code for a
new code module in the ADE, and how to display the source for an existing
code module in the ADE. Some adapters support stepping into the source
code of the ADE while executing the step from the TestStand Sequence
Editor.

Application
Development
Environment (ADE)

A programming environment such as LabVIEW, LabWindows™/CVI™, or
Microsoft Visual Basic, in which you can create code modules and operator
interfaces.

Application
Programming
Interface (API)

A set of classes, methods, and properties that you use to control a specific
service, such as the TestStand Engine.

ASCII American Standard Code for Information Interchange.

Glossary

Using LabVIEW with TestStand G-2 ni.com

B

block diagram Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram that consists of executable icons called nodes
and wires that carry data between the nodes, is the source code for the VI.
The block diagram resides in the Diagram window of the VI.

breakpoint An interruption in the execution of a program.

button A dialog box item that, when selected, executes a command associated
with the dialog box.

C

call stack The chain of active sequences that are waiting for the nested subsequences
to complete.

class Defines a list of methods and properties that you can use with respect to the
objects that you create as instances of that class. A class is like a data type
definition except that it applies to objects rather than variables.

cluster A set of ordered, non-indexed data elements in LabVIEW of any data type
including numeric, Boolean, string, array, or cluster. The elements must be
all controls or all indicators.

code module A program module, such as a Windows Dynamic Link Library (.dll) or
LabVIEW VI (.vi), that contains one or more functions that perform a
specific test or other action.

code template A source file that contains skeleton code. The skeleton code serves as a
starting point for the development of code modules for steps that use a
particular step type.

connector Part of a LabVIEW VI or function node that contains its input and output
terminals, through which data passes to and from the node.

context menu Access context menus by right-clicking on an object. Menu options in a
context menu pertain specifically to the object you have selected.

control An input and output device in a panel or window, which you use to enter
data or make a setting.

Glossary

© National Instruments Corporation G-3 Using LabVIEW with TestStand

custom property A property that you define in a step type. Each step you create with the step
type has its own copy of the custom property. TestStand uses the value that
you specify for the custom property in the step type as the initial value of
the property in each new step you create. Normally, after you create a step,
you can change the value of the property in the step.

D

dialog box A user interface, which you use to specify additional information for the
completion of a command.

DLL Dynamic Link Library

E

engine A module or set of modules that provide an API for creating, editing,
executing, and debugging sequences. A sequence editor or operator
interface uses the services of a test executive engine.

entry point A sequence in the process model file that TestStand displays as a menu
item, such as Test UUTs, Single Pass, or Report Options.

Execution entry point A sequence in a process model that runs tests against a UUT. Execution
entry points call the Main sequence callback in the client sequence file. The
default process model contains two execution entry points: Test UUTs and
Single Pass. By default, Execution entry points are visible in the Execute
menu. Execution entry points are only visible in the menu when the active
window contains a sequence file that contains a Main sequence callback.

expression A formula that calculates a new value from the values of multiple variables
or properties. In expressions, you can access all variables and properties in
the sequence context that is active when TestStand evaluates the expression.

F

front panel The interactive user interface of a LabVIEW VI. Modeled from the front
panel of physical instruments, it is composed of switches, slides, meters,
graphs, charts, gauges, LEDs, and other controls and indicators.

Glossary

Using LabVIEW with TestStand G-4 ni.com

G

global variable TestStand defines two types of global variables: sequence file globals and
station globals. Sequence file globals are accessible by any sequence or step
in the sequence file. Station globals are accessible by any sequence file
loaded on the station. The values of station global variables are persistent
across different executions and even across different invocations of
TestStand.

H

highlight The way in which input focus appears on a TestStand screen.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. A program
development application based on the G programming language and used
commonly for test and measurement purposes.

LabVIEW Adapter See adapter.

local variable A property of a sequence that holds a value or additional subproperties.
Only a step within the sequence can directly access the property value.

lookup string A string that defines a complete path from the object on which you call the
method to the specific property you want to access.

M

Main sequence The sequence that initiates the tests on a UUT. The process model invokes
the Main sequence as part of the overall testing process. The process model
defines what is constant about your testing process, whereas main
sequences define the steps that are unique to the different types of tests
you run.

menu bar Horizontal bar that contains names of main menus.

N

.NET Adapter See adapter.

Glossary

© National Instruments Corporation G-5 Using LabVIEW with TestStand

O

object A service that an ActiveX server makes available to clients.

operator interface A program that provides a graphical user interface (GUI) for executing
sequences on a test station.

P

parameters A value passed to a program or subroutine.

pop-up menus See context menu.

process model A sequence file you designate that performs a standard series of operations
before and after a test executive executes the sequence that performs the
tests. Common operations include identifying the UUT, notifying the
operator of pass/fail status, generating a test report, and logging results.

property A container of information, which stores and maintains a setting or attribute
of an object. A property can be of type number, string, Boolean, container,
object reference, a user-defined data type, or an array of these types. A
property can contain a single value, an array of values of the same type, or
no value at all. A property can also contain any number of subproperties.
Only a container property has the ability to contain any number of
subproperties. Each property has a name and a comment.

R

resource string Text strings stored in an external file so that you can alter the strings
without directly altering the application.

run mode The mode in which you execute a step, such as normal, skip, force pass,
or force fail.

run-time error An error condition that forces an execution to terminate. When the error
occurs while running a sequence, TestStand jumps to the Cleanup step
group, and the error propagates to any calling sequence in the call stack to
the top-level sequence.

Glossary

Using LabVIEW with TestStand G-6 ni.com

S

sequence Located within a sequence file, a sequence contains a series of steps that
you specify to execute in a particular order. When and if a step is executed
depends on the results of previous steps.

sequence context A TestStand object that contains references to all global variables and all
local variables and step properties in active sequences. The contents of the
sequence context changes depending on the currently executing sequence
and step.

sequence editor A program that provides a graphical user interface (GUI) for creating,
editing, and debugging sequences.

sequence file A file that contains the definition of one or more sequences.

Sequence File window A separate (child) window within the sequence editor in which a sequence
file appears.

soft front panel (SFP) A graphical display panel for an instrument.

source code template A set of source files that contain skeleton code, which serves as a starting
point for the development of code modules for steps. TestStand uses the
source code template when you click Create Code on the Source Code tab
of the Specify Module dialog box for a step.

standard named
data type

A data type that TestStand defines and names. You can add subproperties
to the standard data types, but you cannot delete any of their built-in
subproperties. The standard named data types are Path, Error, and
CommonResults.

station global variables Variables that are persistent across different executions and even across
different invocations of the sequence editor or operator interfaces. The
TestStand Engine maintains the value of station global variables in a file on
the run-time computer.

step An element that you can insert into a sequence that performs an action, such
as calling a code module to perform a specific test. Typically, a sequence
contains a series of steps that define your test and execution flow.

Glossary

© National Instruments Corporation G-7 Using LabVIEW with TestStand

step group A set of steps in a sequence. A sequence contains the following groups of
steps: Setup, Main, and Cleanup. When TestStand executes a sequence, the
steps in the Setup step group execute first, the steps in the Main step group
execute next, and the steps in the Cleanup step group execute last.

step property A property of a step.

T

template See code template.

test executive engine See engine.

U

Unit Under Test (UUT) The device or component that you are testing.

V

variables A property that you can create in a certain context. You can have variables
that are global to a sequence file or local to a particular sequence. You can
also have station global variables.

VI Virtual Instrument

VI library Special file of type .llb that contains a collection of related VIs for a
specific use.

W

window A working area that supports specific tasks related to developing and
executing programs.

wire Tool used in LabVIEW to define data paths between source and sink
terminals.

© National Instruments Corporation I-1 Using LabVIEW with TestStand

Index

A
accessing built-in properties, B-1
accessing dynamic properties, B-2
acquiring a derived class from the

PropertyObject class, B-5

C
calling LabVIEW VIs, 2-1
calling LabVIEW VIs on remote systems, A-1
calling legacy VIs, C-1
calling VIs with cluster parameters, 4-4
calling VIs with string parameters, 4-3
clusters

Cluster Passing tab, 4-5
Error Out cluster, C-4
Invocation Information cluster, C-5
LabVIEW cluster, 4-1, 4-5
specifying cluster elements individually, 4-5
Test Data cluster, C-1

code modules, 1-1
code template policy

Allow Legacy and New Templates
option, 5-5

Allow Only Legacy Templates option, 5-5
Allow Only New Templates option, 5-4

configuring a new step with the LabVIEW
Adapter, 2-4

configuring the LabVIEW Adapter, 5-1
configuring the LabVIEW Server, 5-2
configuring the TestStand UI Controls, 6-4
contacting National Instruments, D-1
conventions used in the manual, iv
converting data types, 4-1
Create Custom Data Type From Cluster

dialog box, 4-6

creating a custom data type, 4-6
creating a new step with the LabVIEW

Adapter, 2-4
creating custom operator interfaces, 6-3
creating custom user interfaces, 6-1
creating new VIs, 3-1
creating TestStand data types from LabVIEW

clusters, 4-7
custom step types, 1-2
customer

education, D-1
professional services, D-1
technical support, D-1

D
data types

converting data types, 4-1
creating a custom data type, 4-6
creating TestStand data types from

LabVIEW clusters, 4-7
TestStand and LabVIEW data type

equivalents (table), 4-1
TestStand built-in data types, 4-1
using LabVIEW data types with

TestStand, 4-1
debugging VIs, 3-3
diagnostic resources, D-1
documentation, conventions used in the

manual, iv
documentation, online library, D-1
drivers

instrument, D-1
software, D-1

Index

Using LabVIEW with TestStand I-2 ni.com

E
Edit LabVIEW VI Call dialog box, 2-1,

3-2, 4-6
Description and Connector Pane

section, 2-3
Figure, 2-2
Path and Execution section, 2-2
VI Parameter Table, 2-3, 4-4

editing a VI, 3-3
Error Out cluster, C-4
example code, D-1

H
handling events, 6-4
help

professional services, D-1
technical support, D-1

I
Input Buffer string control, C-4
instrument drivers, D-1
interfaces for TestStand objects, B-5
introduction, 1-1
Invocation Information cluster, C-5
invoking methods, B-1

K
KnowledgeBase, D-1

L
LabVIEW

calling VIs from TestStand, 2-1
calling VIs on remote systems, A-1
configuring the LabVIEW Adapter, 5-1
creating custom user interfaces, 6-1
creating new VIs in TestStand, 3-1

creating, editing, and debugging VIs in
TestStand, 3-1

debugging VIs in TestStand, 3-3
editing an existing VI in TestStand, 3-3
LabVIEW Adapter, 1-1, 2-4, 3-1, 3-3, 5-1
preferred execution system, B-6
suspended VI toolbar (figure), 3-4
using LabVIEW with TestStand, 1-1
using the TestStand ActiveX APIs, B-1

LabVIEW Adapter, 1-1, 2-4, 3-1, 3-3, 5-1
creating and configuring a new step using

the LabVIEW Adapter, 2-4
LabVIEW Adapter Configuration

dialog box, 5-1
Code Template Policy section, 5-4

LabVIEW cluster, 4-1, 4-5
LabVIEW Run-Time Engine, 5-1
legacy VIs

calling legacy VIs, C-1
format of legacy VIs, C-1
settings, 5-6

M
making dialog boxes modal to TestStand, 6-8

N
National Instruments

customer education, D-1
professional services, D-1
system integration services, D-1
technical support, D-1
worldwide offices, D-1

O
online technical support, D-1
operator interfaces, 1-2

Index

© National Instruments Corporation I-3 Using LabVIEW with TestStand

P
passing TestStand container variables to

LabVIEW, 4-5
phone technical support, D-1
professional services, D-1
programming examples, D-1

R
Register Event Callback function, 6-4
releasing ActiveX references, B-3
remote systems

configuring a LabVIEW RT Server, A-5
configuring a LabVIEW VI Server, A-2
configuring a step, A-1

reserving loaded VIs for execution, 5-3

S
selecting a LabVIEW server, 5-1
Sequence Context control, C-6
setting the preferred execution system for

LabVIEW VIs, B-6
software drivers, D-1
step types, custom, 1-2
stopped executions, 6-8
support, technical, D-1
system integration services, D-1

T
technical support, D-1
telephone technical support, D-1
Test Data cluster, C-1
TestStand

ActiveX APIs, B-1
constants and enumerations, B-4
creating, editing, and debugging VIs, 3-1
using LabVIEW data types, 4-1

TestStand Sequence Editor toolbar
(figure), 3-4

TestStand UI Controls
configuration, 6-4
creating custom operator interfaces, 6-3
handling events, 6-4
introduction, 6-1
localization, 6-7
main event loop, 6-6
menu bars, 6-7
shutting down TestStand, 6-6
starting TestStand, 6-5

TestStand Utility Functions Library, 6-2
TestStand Utility Library VIs, 6-2, 6-7
training, customer, D-1
troubleshooting resources, D-1
Tutorials

Configuring a LabVIEW RT Server to
Run VIs, A-5

Configuring a LabVIEW VI Server to
Rrun VIs Remotely, A-2

Configuring a Step to Run Remotely, A-1
Creating a New VI from TestStand, 3-1
Creating and Configuring a New Step

Using the LabVIEW Adapter, 2-4
Creating TestStand Data Types from

LabVIEW Clusters, 4-7
Debugging a VI in TestStand, 3-3
Editing an Existing VI from

TestStand, 3-3

U
user interface utilities, 6-8
using LabVIEW data types with

TestStand, 4-1
using LabVIEW in a TestStand system, 1-1
using TestStand API constants and

enumerations, B-4
using the TestStand ActiveX APIs, B-1

Index

Using LabVIEW with TestStand I-4 ni.com

V
version compatibility, 1-2
VI Parameter Table, 2-3, 4-4
VI Server, A-2

W
Web

professional services, D-1
technical support, D-1

worldwide technical support, D-1

	Using LabVIEW with TestStand
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	The Role of LabVIEW in a TestStand-Based System
	Code Modules
	Operator Interfaces
	Custom Step Types
	Version Compatibility
	Table 1-1. Version Compatibility

	Chapter 2 Calling LabVIEW VIs from TestStand
	Introduction to the Edit LabVIEW VI Call Dialog Box
	Figure 2-1. Edit LabVIEW VI Call Dialog Box
	Path and Execution Section
	Description and Connector Pane Section

	Creating and Configuring a New Step Using the LabVIEW Adapter

	Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand
	Creating a New VI from TestStand
	Editing an Existing VI from TestStand
	Debugging a VI in TestStand
	Figure 3-1. Sequence Editor Toolbar
	Figure 3-2. Toolbar of the Suspended VI in LabVIEW

	Chapter 4 Using LabVIEW Data Types with TestStand
	Data Type Conversion
	Table 4-1. TestStand Equivalents for LabVIEW Data Types

	Calling VIs with String Parameters
	Figure 4-1. VI Parameter Table for String Parameters

	Calling VIs with Cluster Parameters
	Specifying Each Cluster Element Individually
	Figure 4-2. Input Cluster Cluster Data Sources

	Passing Existing TestStand Container Variables to LabVIEW
	Figure 4-3. InputDataLocal Local Variable
	Figure 4-4. TestStand Custom InputData Data Type

	Creating a New Custom Data Type
	Figure 4-5. Create Custom Data Type From Cluster Dialog Box

	Creating TestStand Data Types from LabVIEW Clusters

	Chapter 5 Configuring the LabVIEW Adapter
	Selecting a LabVIEW Server
	Figure 5-1. LabVIEW Adapter Configuration Dialog Box
	Per-Step Configuration of the LabVIEW Server
	Figure 5-2. Advanced Settings Dialog Box

	Reserve Loaded VIs for Execution
	Code Template Policy
	Figure 5-3. Choose Code Template Dialog Box
	Figure 5-4. Optional Parameters Dialog Box
	Figure 5-5. Choose Code Template Dialog Box

	Legacy VI Settings

	Chapter 6 Creating Custom User Interfaces in LabVIEW
	TestStand User Interface Controls
	Figure 6-1. User Interface Controls Palette

	TestStand Utility Library
	Figure 6-2. TestStand Utility Library Palette

	Creating Custom Operator Interfaces
	Configuring the TestStand UI Controls
	Handling Events
	Figure 6-3. Register For Break Event

	Starting TestStand
	The Main Event Loop and Shutting Down TestStand
	Menu Bars
	Localization

	Other User Interface Utilities
	Making a Dialog VI Modal to TestStand
	Checking For Stopped Execution

	Appendix A Calling LabVIEW VIs on Remote Systems
	Figure A-1. Advanced Settings Dialog Box
	Figure A-2. VI Server: Configuration Property Page of the Options Dialog Box
	Figure A-3. VI Server: TCP/IP Access Property Page of the Options Dialog Box
	Figure A-4. VI Server: Exported VIs Property Page of the Options Dialog Box
	Figure A-5. RT Target: Access Property Page of the Options Dialog Box

	Appendix B Using the TestStand ActiveX APIs in LabVIEW
	Figure B-1. Invoking the UnloadModules Method
	Figure B-2. Obtaining the Value of the Name Property from a Sequence Object
	Figure B-3. Obtaining a Reference to a Step of a Sequence Referenced by a Sequence Object
	Figure B-4. Using the GetValString Method to Obtain the Error Message Value for the Current Step
	Figure B-5. Obtaining the Error Message for the Current Step
	Figure B-6. Converting a Module Reference to the LabVIEWModule Type
	Figure B-7. Obtaining a Reference to a Step Object from a SequenceContext Object Using a Lookup String

	Appendix C Calling Legacy VIs
	Figure C-1. Test Data Cluster
	Table C-1. Test Data Cluster Elements
	Table C-2. Old Test Data Cluster Elements from the LabVIEW Test Executive
	Figure C-2. Standard Error Out Cluster
	Table C-3. Error Out Cluster Elements
	Figure C-3. Invocation Information Cluster
	Table C-4. Invocation Information Cluster Elements

	Appendix D Technical Support and Professional Services
	Glossary
	A
	B-C
	D-F
	G-N
	O-R
	S
	T-W

	Index
	A-D
	E-O
	P-U
	V-W

